

RESOURCES FOR SSC-II GENERAL SCIENCE

ZUEB EXAMINATIONS 2021

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from www.zueb.pk to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

1. Why ROM is called Nonvolatile memory. Explain? .			
<u>.</u>			

•		
•		

Chapter	Question	Answer	Cognitive	Difficulty
Energy	1. Explain the difference between Kinetic Energy and Potential Energy with at least one example	1) Potential Energy: The energy which is stored in a body due to its position is called potential energy. Example: Water stored in a dam at elevated position may be looking silent calm and stationery as if does not have any energy. But when it is released through tunnel it can move heavy turbines to generate electricity. 2) Kinetic Energy Kinetic energy also known as energy in motion. Example: The energy by virtue of motion of the body as the water falls or runs through a tunnel. This kinetic energy in falling water turns turbines at the base of large dams and the moving turbines moves the generator to generate electricity	Level	Tevel 70%
	2. Discuss Solar Energy and its extensive uses in present time.	Now a day's electric current is obtained from sun's energy. A device called a solar cell can change the energy of sunlight to electrical energy. Such solar cells are frequently used in calculators, watches etc. Batteries made up of solar cells have been used to run radios, television equipment in artificial satellites going around the earth. Each cell has surfaces made up of two different kinds of crystals. When sunlight strikes these surfaces, electric current flows between the two different crystals.	U	80%

	1	1	ı	1
		Scientists are working hard to		
		harness the energy of sunlight.		
		Solar cells have been		
		constructed which convert		
		sunlight into electrical energy		
		which could be used to run our		
		machines in homes and		
		industries the solar energy will		
		replace many of our		
		conventional sources of energy		
		which are being consumed very		
		fast.		
Current	3. State and	We are now familiar with the	K/R-U	70%
Electricity	Explain Ohm's	fact that whenever a potential	K/K-C	7070
Electricity	Law	difference (V) is applied across		
	Law	the ends of a conductor a		
		current (I) starts passing		
		through it. If the value of V is		
		altered then the value of current		
		(I) is also found change. Now		
		the question arises as to how		
		the current varies with a change		
		in the applied potential		
		difference. The answer to this		
		question was first found		
		experimentally by a German		
		physicist George Simon Ohm		
		who discovered that "the		
		current passing through a		
		conductor is directly		
		proportional to the potential		
		difference applied across its		
		ends provided the temperature		
		and other physical condition of		
		the conductor are kept		
		constant". This statement is		
		referred to as ohms law.		
Basic	4. Define	Electronics is a branch of	K/R-U	80%
Electronics	Electronics	physics which deals with the		
		development of Electron		
		emitting devices and their		
		utilization and controlling of		
		Electron flow in electrical		
		circuits designed for various		
		purposes. The impact of		
		electronics on the daily life of		
		people all over the world is		
		considerable nowadays. These		
		Electronics included radio,		
		television, stereo hi-fi sound		
		systems, motion pictures and		
		video cassette recorders which		
	1	video cassette recorders which	<u> </u>	

			provide a lot of entertainment		
			and information.		
Science and	5.	Explain	Radioactive properties	U	80%
Technology		Radioactive			
		Properties	• alpha-rays :		
			1 The mass of each a newisles		
			1. The mass of each a-particles is nearly four times the mass of		
			hydrogen nucleus.		
			2. The ionization capability of a		
			a-rays is very large		
			3. Penetration power of these		
			rays is very small.		
			Beta rays:		
			1. Those ways offert the		
			1. These rays affect the photographic plate.		
			2. The ionization power of		
			these rays is very small		
			3. The kinetic energy of beta		
			rays is less than that of alpha		
			rays		
			• Y rays :		
			1. They sight electrons when		
			1. They eject electrons when incident on metals		
			2. The speed of these rays is		
			equal to that of light.		
			3. Like alpha rays these rays		
			also get absorbed in various		
Charter 1		Digarer	materials Space exploration yields useful	TT	000/
Space and Nuclear	6.	Discuss Pakistan's	Space exploration yields useful information and provides useful	U	90%
Programme		Space	economic benefits.		
of Pakistan		Programme.	Pakistan is one of the very few		
		S	developing countries which has		
			established an organization for		
			Space research. The name of		
			this organization is SUPARCO.		
			It stands for Space and upper atmosphere research		
			corporation. This organization		
			has its research and testing		
			facilities at Sonmiani near		
			Karachi. It has fired several		
			rockets for weather research. It		
			has also established ground		

	stations to receive data from weather satellites round the clock, for short and long range weather forecasts.	
7. Explain Pakistan's Nuclear Programme.	In 1995, Pakistan Atomic Energy Commission was established. In 1972 an Atomic Power Reactor was established near Karachi. This reactor is capable of producing 170 megawatt of electricity. The energy generated in the core is used to produce high pressure steam to generate electricity through steam turbines. Pakistani scientists have successfully fabricated fuel rod from uranium mined in Pakistan. The fuel used in Karachi Nuclear Power Plant is also made in Pakistan. Pakistan has a long term program of generating electricity with the help of atomic energy as its fossil fuel deposits are not adequate to meet the growing energy requirements. Pakistan has made significant contributions in the field of agriculture, medicine and industry. Institutes are set up at Faislabad and Tando Jam to work for long time preservation of food and fruits. There are a great number of nuclear centres/institutes all across the country. Pakistan has made notable progress in the field of atomic energy. And in future atomic energy will play an important role in Pakistan's economy.	

